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Abstract—This paper studies several new types of exact series solutions to the diffusion equation for
chemically-frozen, dissociated, laminar boundary-layer flows around bodies with arbitrary con-
tinuous distributions of a first-order atom recombination rate along the surface. Plate, wedge, and
cone flows are considered. The analysis extends the theory of Chambré and Acrivos for constant
surface catalytic efficiency and temperature to the case wherein the surface Damkohler number
varies as any power of the distance or is distributed as any polynomial involving integer or fractional
positive powers of the distance. Furthermore, by imposing the approximation of local similarity in the
velocity profile, the resulting solutions are also applied with good accuracy to highly-cooled blunt-
nosed bodies in hypersonic flow.

An approximate method of solution is also developed which provides an extremely simple closed-
form representation of the exact series solutions throughout the entire flow field by means of a local
nonlinear extrapolation of the leading term in the series. It is shown by several examples that this
technique yields very accurate results for surface atom concentration, diffusion flux, and heat-transfer

distributions for a variety of streamwise variations in the wall catalycity.

NOMENCLATURE Gy, €4, Cg, coefficients in blunt body flow

a, exponent for power-law inviscid solution (40);

flow (16); d, exponent in power law distribution
An, A,, series coefficients (22) and (32); of Ku/pw, (34) and (38);
Gy, d4, ag, coefficients in blunt body flow g, o)

solution (37); h, total temperature-sensitive enthalpy
b, exponent for power-law inviscid w2

flow (16); (C-pT—i— 5);
B, coefficients in series representation

Damkohler number distribution hp, specific dissociation energy;

(27); (), integral defined by (11);
B,, B,, coefficients in power-law Dam- (n), integral defined by (19);

kohler number distribution [(31), H(n),

Fig. 3]; Bs(n), integrals defined in (21);
Bs, stagnation point velocity gradient Ky, speed of first-order atom re-

[(due/dx)s]; combination on body surface;
by, by, bg, coeflicients in blunt body solution K, parameter defining Ky/uw varia-

(38); tion around a blunt body (Figs. 7
C, Chapman-Rubesin parameter and 8);

(pt pepre);  Le, Lewis number (Pr/Sc);
Cp, constant pressure specific heat; m, exponent for power-law inviscid
Cp, average specific heat of mixture; flow (16);
* Member Technical Staff, Aerophysics Department, b, static pressure;
Aerodynamics and Propulsion Research Laboratory. Pr, Prandtl number;
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G, total heat-transfer rate per unit area;

Guwps diffusion heat-transfer rate per unit
area;

r, exponent for power-law inviscid
flow (16);

Rg, blunt body nose radius;

Fo» local body radius (Fig. 1);

Se, Schmidt number,

7, static temperature, absolute;

u, flow velocity in x-direction (tangent
to body);

X, ¥, streamwise and normal body co-
ordinates (Fig. 1);

Zy a/ e,

Greek symbols

a, atom mass fraction (p4/p);

B, series solution parameter (22) and
(23);

7, frozen specific heat ratio of mixture;

g, surface Damkohler number (atom-
diffusion time/surface-recombina-

tion time);

7, normal similarity co-ordinate (1);

IO boundary layer stream function;

A, exponent in power-law Damkohler
number distribution;

s viscosity coefficient;

£, streamwise similarity ¢o-ordinate;

2, mixture mass density;

W, wall gradient function (Fig. 2).

Subscripts

A, atom;

c, completely catalytic wall solution;

e, conditions at edge of boundary
layer;

M, molecule;

0, reference value;

s, stagnation point conditions;

w, conditions on wall.

1. INTRODUCTION
SoLUTIONS to the diffusion equation for chemi-
cally-frozen, dissociated, laminar boundary-
layer flows over catalytically-reacting surfaces
have been studied extensively for constant sur-
face temperature, catalytic efficiency, and first-
order atom recombination {1-7]. These analyses
entail various approximate methods of solution
as well as a class of exact solutions given by

G. R. INGER

Chambré and Acrivos [2]. Recently, Chung
et al. [8) have further extended the theory to
include the effects of arbitrary variations in
catalytic efficiency along the surface for a fairly
general class of bodies, using both the integral
method and a modification of a technique de-
veloped by Lighthill [9, 10}. However, it is
clearly of interest to obtain some exact analytical
solutions that account for varying surface cata-
tytic efficiency in order to appraise the accuracy
of these approximate methods. Moreover, since
the analyses mentioned frequently involve a
good deal of numerical work in specific applica-
tions, analytical solutions are very useful in
clarifying the physical behavior involved. The
object of this paper is to describe both exact
and approximate closed-form solutions to the
boundary-layer diffusion equation in the presence
of body surfaces with a first-order atom recom-
bination rate that is distributed in any arbitrary
continuous manner and to compare the results in
various specific applications with those obtained
by the integral, Lighthill, and local similarity
methods.

Exact solutions will be developed for flat plate
flow, incompressible flow over wedges, and
supersonic flows around wedges or cones where-
in the surface Damkohler number varies either
as any power of the distance or is distributed as
a polynomial in the distance. These solutions
constitute a direct extension of Chambré and
Acrivos by analogy with the Chapman-Rubesin
treatment of heat transfer to non-isothermal
surfaces [11]. To be sure, Chambré and Acrivos
have pointed out the possibility of these obvious
generalizations of their theory for constant cata-
lytic efficiency and wall temperature; however,
the actual analysis has not in fact been carried
out and is therefore presented here. Further-
more, by imposing the assumption of local
similarity in the velocity profile, it will be shown
that the method may also be applied with good
approximation to the case of hypersonic
flow over highly-cooled bodies. Application to
the particular case of blunt-body flow with
varying surface catalycity around the nose will
be made in detail.

The exact solutions take the form of power
series in the streamwise co-ordinate along the
body. In many cases of interest, it will be shown
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that they satisfactorily describe a large portion
of the effects due to varying catalycity along the
surface. Nevertheless, the entire region of physi-
cal interest usually cannot be conveniently
analysed by these methods because either a
limited radius of convergence exists in certain
cases or the use of a prohibitive number of
series terms becomes necessary. Therefore, an
approximate method is set forth for carrying the
exact solutions forward throughout the entire
flow field by means of a local nonlinear extrapo-
lation of the leading term in the series solutions,
This technique yields very simple closed-form
relations for the atom concentration and diffu-
sion along the surface. It is shown by several
examples that the technique predicts the full
exact solution (where applicable) very accurately
and is also in good agreement with the predic-
tions of other, more complicated, approximate
solutions.

2. GOVERNING EQUATIONS IN THE SIMILARITY
PLANE VARIABLES

A. Basic relations

Consider laminar boundary-layer flow of a
dissociated binary gas mixture around a two-
dimensional or axially-symmetric body (Fig. 1)
with an arbitrary distribution of the atom recom-
bination rate along the surface. The flow is taken
to be chemically-frozen throughout (gas phase
reactions absent) and the velocity distribution
across the boundary layer is assumed locally
self-similar and independent of the solutions to
the energy and diffusion equations. Then, by
introducing the well-known similarity co-or-
dinates

x

pg’.l,eugrge dx
1]

€x) — cj

-

¢ = 0, two-dimensional
{ o

e = 1, axisymmetric

rile Y
(x,y) = —2_. j d
7(x, y) V2D 1, pay
and the assumptions
(22)
(2b)

pp = -constant = Cpepe

Cp, = Cp,, = constant = Cp
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FiG. 1. Flow configuration.

the diffusion and energy equations of the boun-
dary layer for constant Schmidt and Prandtl
numbers can be written as follows:

oz 0% 0z
Scf B + P 28cf '€ bE (3)
dg % u? v
P'fa,‘+é77§“ (= Pry - (™)
@
where a prime (') denotes differentiation with

respect to 7, z = afa,, g = hlhe (h = CpT +
#*/2), and f{(n) is the boundary layer stream func-

7
+ 2Pif ¢

tion (f* = u/u,). The boundary conditions on
(3) and (4) are

S0} = 2(0, §) =g(o0, =1  (5)
and, at the wall

0 =10 =0, g0, 6 =zgus) (©)
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where Ky is the speed of the atom recombination
reaction on the surface (a function of the given
surface material and temperature distribution).
Equation (7) expresses the fact that the atom
diffusion flux from the gas to the wall is equal to
the net rate of atom recombination on the sur-
face, here assumed to be a first-order reaction.
The parameter {(£) may be interpreted as a local
ratio of atom-diffusion time to surface-recom-
bination time (Damkohler number), which
determines the relative effects of surface reac-
tion and gaseous diffusion on the atom concen-
tration profile. When { < 1, the distribution of
atoms is primarily controlled by the (small)
surface recombination rate in such a way that,
in the limit { == 0, the diffusion flux vanishes,
leaving a uniform atom concentration z{x, £) = |
across the boundary layer. On the other hand,
for { » 1, the atom distribution is controlled
by diffusion in such a way that the surface
becomes an infinite sink for atoms [z(0, &) = 0],
with éz/6y (0, £) finite in the limit { - co.

Once the diffusion and energy equations are
solved, the local surface heat-transfer rate g
may then be calculated from

— /(26 Prguw g
2 p, 20, &)+
Cpeprtter * o 0. &)

Lehpae ;f} 0,8 ®

where hp is the dissociation energy of the gas
and Le is the Lewis number (Pr/Sc).

Equations (3)-(7) constitute a two-point
boundary value problem that requires the solu-
tion to a set of linear partial differential equa-
tions when g,(£) and {(£) are arbitrary functions
of ¢. The linearity of these equations is, of course,
a consequence of the assumptions concerning
pp and f{n). Now, it has been shown that, when
C and Cp are suitably chosen, equations (2)
are good approximations for determining sur-
face phenomena such as heat transfer, diffusion
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rate, and atom concentration {12, {3]. On the
other hand, when pu = constant, the assumption
that the boundary layer velocity profile is self-
similar and independent of z and g is, in fact,
exact for supersonic flow over wedges and cones
(f = Blasius function) or incompressible wedge
flows (Falkner-Skan solutions). Moreover, with
the exception of highly adverse pressure gradient
regions, this assumption has proved to be a
reasonably good engineering approximation for
various types of bodies in hypersonic flows,
including highly cooled blunt bodies [12, 14,
15].

As a result of assumption (2b) [15], the energy
equation is uncoupled from the diffusion equa-
tion and the solution to each may therefore be
regarded as a separate problem. Now the solu-
tion to (4) depends only on the momentum
equation f{(n), the assumed distributions of wall
temperature, and the inviscid flow velocity, and
has been given for various cases by numerous
authors [9-13, 135, 16]. Therefore, for the purpose
of evaluating the effects of variable surface
catalycity on the atom concentration, diffusion,
and the heat transfer at the wall, our interest
clearly lies in solving (3), (6), and (7) with
{(¢) an arbitrary function of £

B. Exact similarity solutions

The boundary condition (7) associated with
the boundary layer diffusion equation (3) does
not admit a self-similar solution z = z(n)
when Ky, pw, te pe Fo» and u, are arbitrary
functions of £ or x. Before treating this general
case, however, let us briefly review the class of
problems in which a similarity solution can be
obtained. This occurs when { = constant = {,
and the term 2z/6¢ in (3) may be dropped to give
the ordinary differential equation

©)

The solution subject to the boundary conditions
(6) and (7) has previously been given by Goulard
[17] and is

Scfz’ + z7y== 0.

1+ COI(T))
“0) = T £ 1(o0) (102)
2(0) = Lz(0) = +‘—§:7("55) (10b)
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where
I() = [3 exp (=S [ fdmydn* (1)

Hence, for a completely non-catalytic wall

(£ =0),
z(0) =0, z(n) = (12)

whereas, in the opposite extreme of a completely
catalytic wall ({, - c0),

I
z = zdn) = %, z0) =0
z (0) = I(o0) L. (13)

The solutions (10) with 0 << {, < oo pertain to
all frozen boundary-layer flows for which the
streamwise variations in inviscid flow properties,
wall temperature, and catalytic efficiency are
such that

Kw UeT§
TVE
that is, where the Veloc1ty of atom recombination
on the surface decreases with increasing ¢ at the
same rate as the boundary-layer diffusion flux.
Now, by equations (1) and (10b), the actual atom
concentration gradient at the surface in the
physical plane is

V(C) pepretier§
" /(2 §% peprerdeue dx)

which becomes infinite at the origin when {, # 0
unless the wall temperature (uy) is appropriately
distributed. To illustrate, consider the general
class of flows for which pepe ~ X2, py ~ x?,
U, ~ xm, and r, ~ x7 (a, b, m, and r being ar-
bitrary constants). Here, self-similarity exists
when the surface catalyticity is distributed as

(14)

2’ (0) {15)

oz
5},(0, &=

l+a m—2b (1+a—-m—2b)
Ky~ x ( ) ~ 21 Farm+2ey  (16)
so that
oz (1+2b
a—y(O, £ ~x" ~(0 £)
(1 +26—a— m)
~ & Al +a +m+2er)_(0 &) )

* When f(y) is taken to be the Blasius function,
I(c0) =~ (0:47 Sct/3)1,
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will become infinite at x — 0 unless 2b <
—(1 — m) + a. Physically, this condition re-
quires that the diffusion coefficient of the gas
approach infinity rapidly enough at the origin
to either balance or overcome the increase in
diffusion flux due to the vanishing boundary
layer thickness. We note, however, that a self-
similar solution having a finite éz/dy (0, 0) does
exist under isothermal (6 = 0), iso-catalytic
(Kw = constant) conditions in the special case
of stagnation point flow (¢ = 0, m = 1) since
the boundary layer thickness does not vanish at
x=0.

Although the relations (10) are exact only when
{ = constant, by invoking the idea of local
similarity, they can also be made to serve as
approximate solutions when the Damkohler
number varies along the surface [12, 14, 15].
The local similarity concept is based on the
argument that, when () is sufficiently slowly-
varying, one should be able to approximate the
exact non-similar solution at each £ by using (10)
in conjunction with the appropriate local values
of {(¢). The conditions under which the flow
may be considered slowly varying can be defined
by an examination of the diffusion equation (3).
Byemploying anintegratingfactorexp(Sc [7 fdy»),
formally integrating this equation twice, and
employing the boundary conditions (5) and (7),
one obtains

1 — 28c¢ (d/d¢) [9(o0)]
1+ ()

2(0, &) = (18)

where

Mn) = {3 exp (—Sc [3fdn)

({3 exp (+Sc (3 fdn)f'z dn]dn. (19)

Now, by approximating z(n, ) in 9(y) by the
local similarity value, for the purpose of esti-
mating the contribution of the non-similar
term to (18), one obtains

(0, 9
| . 25¢ £ (d/de) K(o0) [ﬂl(oo) — m(oo)]

o M H) | 1+ L(0) |

= i+ 2i(o0)

(20)
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where
th(n) = [3 exp(—Sc |3 fdn)
[f3 exp(Scfp fdn)f dnldn (2la)
By = [1 exp{(—Sc |3 fdn)

]
¢
I

[J’g exp (Sc {7 fdn) R(—Zg—) d'q} dn (21b)
with &, = ¥, when Sc¢ < | (11). According to
(20), the local similarity approximation will be
accurate when the second term in the numerator
is small compared to unity. Evidently, this con-
dition is always satisfied when { » 1, that is,
when the local surface is highly catalytic. How-
ever, it is not necessarily satisfied when £ < 1;
hence, local similarity may not be very accurate
when the surface recombination rate is small.
Moreover, it is clear from (20) that local simi-
larity will never hold in the vicinity of very
abrupt changes in surface catalycity.

3. EXACT SOLUTIONS FOR ARBITRARILY-
DISTRIBUTED SURFACE CATALYCITY

The diffusion equation (3) has been solved in
[2] for flat plate and incompressibie wedge flows
when the catalytic efficiency and temperature
are constant along the surface. However, it is
clear by analogy with the theory of Chapman
and Rubesin [11] that the solution is readily
generalized to arbitrary but continuous distri-
butions in Kyfu, This extension will now
be given for the important case of a first-order
atom recombination rate on the surface. (More
complicated, higher-order, surface recombina-
tion mechanisms could also have been treated
in a similar manner if desired.) It should be
noted that the present formulation is a more
general one than that in [2] because it includes
the Mangler and Stewartson-Illingworth trans-
formations and is therefore applicable to super-
sonic flows around cones and (approximately)
to hypersonic flows over slender and blunt-
nosed bodies.

A. Analysis

As suggested in [11], a general solution to (3)

is sought by separation of variables and super-

position of particular solutions. Accordingly, a

solution of the following form is assumed:
z(n, &) = 1 + X Ap"B Zn(n)

n=0

(22)
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where the A, are constants and #, 8 are integers
with 8 fixed over the summation. By substituting
(22) into (3), it is found that the Z,(y) must
satisfy the ordinary differential equation

SefZ, + 2 —2 ( g) SefZn = 0. (23)

The boundary conditions (6) and (7) require
Zn(c) =0 (24
and

L A8 Z,(0) = UH [ + T Ant™P Za(0)] (25)

==

where it is convenient to take
Zn0) =1 (26)

leaving Z/(0) to be determined. Now (25) is
satisfied by all Damkohler number distributions
(including the effect of variable Ku/uw) of the
form

{(é) = 3 B 8 (x an integer) @n
=

when the A, are determined from the Z(0)
and the coefficients B, as follows:

B, b
PRE— -
0 Z0) — B, '
4L+ 498, |
1 Z(0) — B, b
. > (28)
n—1 i
(1 + Ag)Bp + 2 BjAn— |
T el N J
! Z(0) — B,

Thus, (22) is an exact solution to (3) whenever
{ is a Taylor or fractional power series in £. The
atom concentration at the wall and the gradient
normal to the surface are given by

Z(;(O) ,
S CAN A M8 29
20,60 = oDy £ T A @)
iz - Cpe.ueffe_"f)
oy (0, &= Hw\/(zé)

B Z(0)

e [m + Anz;(o)gma}. (30)
0 [}

a=1
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The local heat transfer due to diffusion is then
given by §u, = (uwhpae/Sc)dz/oy(0, £). Since
Z0) = —[I(0)]"!, (10b) shows that the
leading terms in (29) and (30) are the similarity
solutions pertaining to a uniform surface
catalycity { = {, = B,. Therefore, (30) yields an
infinite diffusion heat transfer at £ = 0, unless:
(a) pw times the coefficient of the bracketed
term is a constant or vanishes at £ = 0 when
B, # 0, or (b) the surface at the origin is com-
pletely non-catalytic (B, = 0) and the rate at
which { approaches zero at the origin is suf-
ficiently large to balance or overcome the
corresponding effect of the vanishing boundary
layer thickness. As an example, for the class
of inviscid flows and body shapes defined above
in connection with (16), condition (a) gives
0 < —(1 — m) + a, while condition (b) requires
that

20a+m+ 14 2er)

0< B < —

, m=*=1.
When { varies as a single power of the distance,

that is,
C = Byf)‘ (3 1)

where B, is a constant and A is any non-zero
positive or negative number, two special cases of
the foregoing general solution can be found by
writing 0z/0¢ = (&z/20) (d{/d¢) in (3), assuming
series solutions in ascending positive or negative
powers of £, and then proceeding in the same
manner as described above. The resulting solu-
tions are

20 ) =1+ I A7) )
n= I
=1+ 3 At Zl) |
- LG
An= By A= D a0
1 Z/©) J
i=0

and
2(n, &) = zm) + X AL Za(n)

n=1

= zn) + X g™ Z(o)

u=]1
4 T Z
Ay="= — I (A<0)
n B/\ B)\

]
1
|
} &)
|
J
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where Zn(n) and Z (0) are obtained from (33)
by replacing 8! with |A|. The solutions (32) for
A > 0 involve an increasing surface catalycity
along the body and were previously obtained by
Chambré and Acrivos for constant K /u, on
either isothermal flat plates (A = 1/2) or wedges
in incompressible flow

A=0-m20 +m = (1 — 9/,

where 76 is the wedge apex angle and u, ~ x™].
However, the present theory further includes the
general class of flows cited in connection with
(16), as well as any variation of catalytic effi-
ciency and temperature along the surface for
which Ky/uw ~ x@ (d = arbitrary constant), by
merely adjusting A according to

. l14+a+2d—m

T 2(1 a4+ m - 2er)
provided d > — [(1 + a + m)/2], (A > 0). For
such flows, (17) and (32) indicate that there is

no singularity in diffusion heat transfer at the
origin, provided

A (34)

l—a—m .
N i T arm T 2y (e d>

—a). (34)

The solutions (33) for A < 0 are apparently new
and represent flow along a surface whose cataly-
city is decreasing with distance. It can be seen
from (17) and (33) that these solutions yield
an infinite diffusion heat transfer at the origin
regardless of the value of A unless

0<—(10—m+a

The boundary value problem (23, 24, 26)
possesses unique solutions for all values of
n/B = —1/2, and these have been studied
extensively by various investigators for both plate
and incompressible wedge flow boundary-layer
velocity distributions [11, 18]. Therefore, Z(n)
and Z(0) may be regarded as known functions
in the present analysis. A plot of Z (0) versus
n/B and Sc based on the Blasius profile is given
in Fig. 2 to illustrate the typical behavior of the
gradient function. It may be seen from Fig. 2
and Cauchy’s ratio test [19] that the series
solution (32) for the special class of flows (31)
is absolutely convergent for all {(¢), although
the convergence becomes slow when { > 1. On
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n/B

FiG. 2. Wall gradient function Z,'(0).

the other hand, by the same criterion, the series
(33) for A << 0is found to be divergent for all {;
however, a more detailed study shows that this
series is, in fact, of a semi-convergent character.
In view of this property, and since (22) and (32)
cover most of the problems of practical interest,
these solutions for A < 0 will not be considered
further in this paper.

In the case of polynomial Damkohler number
distributions, the comparison test shows that the
series solution (22) will converge over a given
region whenever (27) is also convergent in this
region and 4, < By, although this condition
becomes unnecessarily restrictive when (27)
involves only a finite number of terms. However,
one cannot formulate any general criterion for
this convergence requirement, since the A4,
depend not only on B, but also on all the
B, and Ay, as well; each specific type of
distribution must be evaluated individually. It
will be shown below that the solutions for this
class of distributions in catalycity are of practical
interest.

B. Example application: flat plate flow
Steady laminar boundary-layer flow on a flat
plate or a wedge in supersonic flow

(m=a= =0, £ = Cpepreliex)

is a particularly convenient and yet representa-
tive physical model with which to illustrate the
salient features of the foregoing exact solutions

for various types of Damkohler number dis-

tributions. In particular, it is of interest to

examine variations in surface catalycity along the
plate of the type (31) by assuming

K Kwu 4 (vaU

M ya e

M Hae,y M,

so that A == (1/2) 4+ d and

\/(2) SC Kwo
pwgde (Cpepretie)™

=a constant)

N

Here, it is convenient to switch from ¢ to x by
writing { = B¢ = B;x* where
., Sc Ky
B, = ’L‘l‘e;i:(" V(2Cpepeetic)

and A = (1/2) + d. Typical distributions of the
atom concentration and diffusion heat transfer
along the plate surface, as given by the
first ten and fifteen terms of the series (31), are
shown in Figs. 3 and 4, respectively, for
Se = 072 and A = 1/2 [2], 1, 3/2, and 2.* The
abscissae and the ordinates of the diffusion
curves used in these figures were chosen because
they render the solutions in a universal form
applicable to any combination of the inviscid
flow and gas properties. It is seen that the first
ten series terms are sufficient to accurately
describe more than 50 per cent of the maximum

3 Uamg a desk calculator ‘each of these cases requnred
less than an hour to compute for the range of x and ¢
shown in Figs. 3 and 4.
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F1G. 3. Variation of atom concentration along a plate for power law distributions of the surface catalycity.

total decrease in atom concentration and 75 per
cent of the corresponding increase in heat trans-
fer (the variation in the former appreciably
lagging behind the latter) that can occur down-
stream of the non-catalytic leading edge because
of the increase in Damkohler number with x.
To be sure, the slow convergence of the series
for { > 1 generally limits the usefulness of the
solution in terms of x to a relatively small region
near the leading edge. Nevertheless, when judged
on the basis of the streamwise variations in
surface phenomena that can be analysed, these

exact series solutions provide an easily calculated
and relatively simple description of a significant
portion of the flow field for surface reaction
distributions of the type (31). There are also
shown in Figs. 3 and 4 the local similarity
solutions appropriate to each A, the approximate
surface atom concentration distributions ob-
tained by Chung et al. [8] for A = 1 and 3/2 using
a modified Lighthill method, and the result for
A = 1/2 obtained by Chung and Anderson [6]
by an integral method. In view of (20) and the
rapid variations taking place downstream of the
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leading edge, local similarity yields an under-
standably poor gquantitative approximation to
both z(0, x) and 0z/8y (0, x) in these examples
(except for extremely small x), the inaccuracy
increasing with A. As predicted by (20), the non-
similar effect causes the value of z(0, x) to lie

above the corresponding local similarity solution.
Note, however, that the exact solutions do tend
to become parallel to the local similarity curves.
On the other hand, the results of [6] and [8] are
seen to be in good agreement with the present
solutions, which supports the generally accepted



DISSOCIATED LAMINAR BOUNDARY LAYER FLOWS OVER SURFACES

ATOM CONCENTRATION

o8 Y\
< %° \\‘\ PLATE
g T \\<; T
N g
> R
B cone” | <1
02
0 02 04 06 08 0
(Bi)mx

!

825

DIFFUSION HEAT TRANSFER

i
Q. P_ATE(e=o)/
w04
> 1 T~
b
:i 03 A 7\\
2 ZICONE {e =1)
$N
sl o2
&
g
:Q O
S
@

o 02 04 S‘S 08 10

(Bi)24+l.x

SERIES SOLUTIONS 15 TERMS, Se=0-72,¢=1/2
FiG. 5. Comparison of exact solutions for a fiat plate and cone.

confidence in the accuracy of the Lighthill and
integral methods.*

It may be seen that the solutions for a
cone in supersonicflow [e =r =1, m=aq = (,
£ = Cpupeue (sin? 8/2) (x3/3)] differ from the
foregoing in only two respects: a value of
A = (1/3)Apiate = 1/6 -+ df3 is used in obtaining
the Z,(0) in (32), and B, = (B))p1ate//3. Conse-
quently, the distributions of z(0, x) and §u,
along the cone surface for a given value of 4,
when plotted in the manner of Figs. 3 and 4, will
be quite similar to the results for a flat plate.
This is illustrated in Fig. 5 for the case 4 = 1,
where solutions for both a plate and cone are
presented.

C. Hypersonic flow around a blunt body

By assuming a locally self-similar boundary-
layer velocity profile, equations (19) and (29)
may also be used to described (approximately)
the effects of finite surface catalycity on frozen
boundary-layer flows over bodies other than
plates, wedges, or cones. An important example
of such an application is the stagnation-region
flow around a blunt body in a hypersonic stream.
Here, an exact similarity solution to the diffusion
equation does not exist downstream of the stag-
nation point because of the strong inviscid

* These results were kindly provided by P. M. Chung

and S. W. Liu in a private communication.
3G

pressure gradient associated with the rapid ex-
pansion around the nose. We shall now show that
the present solution for a polynomially distri-
buted Damkohler number is capable of
describing satisfactorily this non-linear behavior.

Consider the stagnation region of 2 hemisphere
or cylinder (Fig. 1) and regard the inviscid flow
as frozen in dissociation by the expansion
around the body [ae{x) = as]. Here ry, = Rpsin 8
and the local pressure can be represented by a
Newtonian distribution

Pex)

Ds

:cosz(}czlﬁﬁz—i—é&‘iw—

7
g6
4

Bt
(35)

This series representation gives a good approxi-
mation up to § < 60°; more terms could, of
course, be included to go further around the nose
if desired. From the isentropic relation

}_?_:e

( _f.’f)';’
Ps Ps

and the inviscid momentum equation, the cor-
responding local velocity is

3?6’—2
_( 8?8 )83
85}'%—44}75*{”20
+( P )84‘-...(36)

Ue
Bsx
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where

_(duey 2ps\ o,
RN

and ¥, is the frozen specific heat ratio for the
inviscid flow. For the purpose of illustrating the
essential features of the solution, we postulate a
linear viscosity~temperature relationship for the
inviscid flow and consider variations in K/,
long the body of the form

Bo Ru (g 4 kg

Hw Haw,
(where K; and d > 0 are arbitrary). Then, from
(1) and (7), respectively, are obtained

¢ = 20+ 9¢ e
- PsIJasBsR% o
e+ 1\ (1176 — 2 2e
() (T )
L___._V_______.J
ay
1+ 1
+ (3—+——Z) 4 — (41 Z) a0 +- . . ] (37)
C(G) = §3(1 + Klad)
G, 3e—2 e\ @
% [l B (*2_ 87 “5)7?
g"“‘*‘f—""“‘_)
by
g2 g8
+ by — by 5 +J (38)

where a,, a4, ag, by, by, and by are given as
functions of %, and e in Table 1, and where

. CPsiLs Kwo
N e

The variation of this parameter with flight
conditions and surface catalycity is illustrated
in Fig. 6. Equation (38) is valid as long as
{ = 0. Now, (37) may be inverted to obtain
6 = 0(¢) [19], and the Damkohler number
distribution thereby expressed as a function of
£’; accordingly, there results

6(¢) = (&)rrata 1 + (€)Y o)
= cy(§N A L]

(3%

Hag

(40)
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and
1) _
Ls
+ (by — 2e9by) (£)OFe) —
+ Ky(£naza+e

by 1/
.- N1/ (1+€)
1= @)

X ( I — (by — dcy) (£) 40

b {b4 — 2¢9by — d [04 -+ coby

- (‘L}l) cz]} @ .,

The values of ¢, and ¢, are also shown in Table 1.
It may be noted from this table that the co-
efficients in (40) and (41) depend rather weakly on
7¢ and, therefore, on as.

Since the polynomial (41) reduces to the form

41)
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Table 1. Blunt body flow coefficients
ye = 1-1 ye = 125 ye = 140 ye = 1-55 Ve = 1:67
Coeffi-
cient € = e=1 e=0 e=1 e=0 e=1 e=0 e=1 €= e=1
a, 1-148 1-815 1-175 1-842 1-196 1-863 1-214 1-881 1-225 1-892
a, 0-982 2-646 1-021 2:703 1-053 2-749 1-079 2:787 1-102 2-817
a, 0-766 2948 0-794 3-022 0-816 3-081 0-834 3129 0-846 3-165
b, 0278 0247 0-238 0211 0-205 0-183 0-179 0160 0-162 0-144
b, 0-035 0-217 0-020 —0-229 00081 —0-239 | —0-0014 —0-247 | —0-011 —0-255
bg —0061 —0-563 | —0-048 —0-575| —0-036 —0-602 | —0:024 —0-590 | ~0-0097 —0-591
Cy 0-287 0-302 0-294 0-307 0299 0-311 0-303 0-313 0-306 0-315
Cq 0-098 0-166 0-101 0-168 0-104 0-170 0-106 0-172 0-109 0-173
(27) for any value of d > 0, it is clear that solu- i |1+ o Ky p
tions (28) through (30) may be applied to blunt = Gup w; + s
body flows. As an example, let us consider the X
case d = 1, for which _ { [b2(“’1 +8&) + K1§8j| @
(&) (wl + Cs) (w2 + Zs)
g7 = L KaE)E — bEye G+ 9a)
+ m 0 + Y (44b)
— Ki(by — ¢3) (£)%8 + (by — 26b) (§)V8 + . .. ,
(42) where wp = —Z,(0). Here, the zero’th-order

with 8 = 2(1 4 ). When f(») is approximated
by the Blasius function in the case of highly
cooled walls [12], the leading terms in the series
solutions for z(0, £) and ¢y, are

0478 [ &
04787 + 4, | (wl+le

B [1;2@»1 ;: %:) C—j KfCSJ (£)8 £ .. } (43a)

20, &) = ) K(&)e

3 L
= 2(0, 0) {1 — (wl i is) K0

. bz(w1 + Ca) + Kfcs
[ rY ]ez+..

} (43b)
and

q.wD(fl) = hDasSC_ICBZ(O, 0 \/[CPS}LSBS(I + ]

w Ky (&)ve — {[bz(wl + &) + K3ls)w,
w; + Ls (w1 -+ Cs) (wz -+ Cs)

G+ 9a) .
+r—f-€)2}(§)/ﬁ+"'] (44a)

><[1+

terms correspond to the self-similar stagnation
point solution given by Goulard [17]. The com-
plete solutions for the surface atom concentra-
tion and diffusion heat-transfer distributions
around a hemisphere, using series terms up to
and including 6%, are shown in Figs. 7 and 8,
respectively, for Sc = 072, a; = 0-5 (§, = 1-53),
and various degrees of stagnation point cataly-
city. For each s, solutions are shown for constant
wall temperature and catalycity (K; = 0) and
also for both increasing and decreasing Ku/paw
around the nose. For £ < 1 (8 << 57-3°), these
solutions converge very rapidly and were easily
computed on a desk calculator.

It is seen that, when K; <C 0, the expansion
around the nose decreases the local surface
catalycity relative to the stagnation point for all
0 < ¢ < oo, This is because the Damkohler
number decreases monatonically with 6 as
a combined result of the reduction in the
boundary-layer diffusion time associated with the
dropping pressure and rising velocity, and the
increasing surface recombination time when
K; < 0 (38). When K; < —1, the latter effect
can substantially accelerate the approach toward
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F1G. 7. Surface atom concentration distribution on
the surface of a hemisphere.

non-catalytic behavior downstream of the
stagnation point even when {; is large. On the
other hand, the atom concentration and diffusion
flux do not increase and decrease, respectively,
in a monatonic manner around the nose when
K/ increases linearly with 6. Here, the in-
creasing surface recombination rate competes
with the effect of the inviscid expansion and
initially increases the effective surface catalycity
as the flow proceeds around the nose. At a
certain value of 8, which increases rapidly with
Ky, z(0, 6) and §u(f) reach a minimum and
maximum, respectively. This happens when the
effect of the expansion eventually becomes large
enough to balance out (and subsequently over-
ride) the effect of increasing Ky,/uqw. It is clear that
if Ku/pw is distributed quadratically in 8(d = 2),
a certain value of X; > 0 would exist such that
either the atom concentration or heat transfer
would remain constant throughout most of the
nose region. When d > 3 and K; > 0, it is like-
wise clear that maxima and minima in z(0, 6) and

G. R. INGER

Guwp(0), respectively, would appear downstream
of the stagnation point. Here, the surface would
at first become effectively less catalytic with
increasing 6 and then, beyond a certain distance,
pass over to an increasingly catalytic behavior
as the effect of Ki/uy attains predominance over
the influence of the expansion.

Unless |K;| is large (3 1), Figs. 7 and 8 show
the surface atom concentration and catalycity to
be slowly varying with 6 up to 6 ~ 60° for all
values of {s. Consequently, the local similarity
approximations indicated in these figures are in
understandably good agreement with the series
solutions. (Of course, when K is not small and/or
more rapid variations of Ky/u, with 6 are con-
sidered, the local similarity theory will be far
less satisfactory.) It may be noted that the
variation of z(0, §) with 6 for any K, becomes less
pronounced when the stagnation point cataly-
city approaches either of its two extreme values.
Indeed, an examination of the leading terms in
the series solution (43b) shows that z(0, 6) -» |

T T T T
Ls=®, ALL K, (COMPLETELY CATALYTIC)

K.
S¢=072,a5=0-50, Ew ~1+K, 8
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O I : SOLUTIONS
S ' . —-——— LOCAL SIMILARITY
INTEGRAL METHOD
FOR 4,=0 [8]

N\

o3}

0-2

5C Gy $6) /aghpnJICFs pes Bs (1 +2))

O~

4 £520031 (K=0)

=0, ALL 4;
0 10 20 30 40 50 60 70
8 (DEGREES)

¢}

F1G. 8. Diffusion heat-transfer distribution around a
hemisphere.
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when {; — 0 and z(0, 6) - 0 when {; — co for any
finite K,.* It may, in fact, easily be verified that
this limiting behavior is true for all types of
Ku/uw distributions in addition to the linear
variation illustrated here.

The results of Chung and Anderson for the
K, = 0 case, obtained by means of a von Kér-
man-Pohlhausen integral method, are shown in
Figs. 7 and 8 and are seen to be in excellent
agreement with the present series solutions.

4. EXTENSION OF THE SERIES SOLUTION TO
THE ENTIRE FLOW FIELD

Although the foregoing series solutions satis-
factorily describe a significant portion of the
change in surface properties due to varying
surface catalycity, they are usually unsatisfactory
for treating the entire streamwise extent of the
flow field in many problems of interest because
of the prohibitive number of slowly converging
series terms that must be used. Consequently, it
would be very useful to have a simple approxi-
mate method of carrying these solutions fore-
ward throughout the entire flow field.

Recently, Rae {20] has studied theoretically
the effects of homogeneous non-equilibrium
dissociation near the leading edge of a flat plate
by a series solution involving ascending powers
of the homogeneous reaction Damkohler
number. As a result of this analysis, Rae devised
a relatively simple but accurate empirical method
of extending his first-order solutions to a region
downstream of the leading edge that is far
beyond the actual radius of convergence of the
first-order terms. In view of this success and the
qualitative similarity between the methods of
solution employed here and in [20], one is there-
fore naturally led to the idea of adapting Rae’s
approach to problems involving heterogeneous
surface reactions.

To bring out the essential arguments involved,
consider frozen dissociated boundary-layer flows
over a flat plate, wedges, or cones in the case
where the surface catalycity varies according
to the simple power law (31) with A > 0.

* When {;— 0, (44b) shows that ¢ ,(6) also approaches
zero everywhere. On the other hand, when {; — 0, §u;(0)
is a constant and ¢, ,(6) decreases with & because of the
increasing boundary-layer thickness as the flow expands
around the nose.
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According to (32), the leading first-order terms
in the full series solutions for the change in
atom concentration and diffusion along the
surface are

z(0,§)=1—5§)+...

CPeiLeuer H T
2wyl — 2(0, §)] (46)
where wy (Sc, A) = —Z(0) is obtained from
Fig. 2 for any chosen value of
_t ¥
=% 4F
By differentiating (46) with respect to £, it may
also be noted that, to first-order, A is related to

the streamwise variation of the surface diffusion
as

(45)

0z

B =12

)~ £@[dH[@z/om 0, H] _
T ()0, T

Equations (45), (46) and (47) are of course valid
only for { « 1. However, following Rae, we
now seek to extrapolate these first-order solu-
tions to arbitrary values of { by making the
following assumption: the relationship (46)
between z(0,§) and 0z/o9 (0, §), which is
rigorous only for { <€ 1, is in fact the correct
form of the solution along the surface at all {,
provided that w,()) is based on the value
A ~ X given by (47). Substituting the boundary
condition (7) into (46), one thus obtains the
following local approximation:

o(X) _ (2/om) ©,
w(A) + ¢ 4 ’
The corresponding value of A’ is found by dif-

ferentiating (48) with respect to &, holding o,
constant:

N @)

z(0, &) ~ (48)

X~ 20, 6 (f ‘“é—d—g) — 20,00 (49)

At { -+ 0[z(0, £) - 1], these relations become
exact since A’ — A; therefore, they give the cor-
rect initial values and streamwise gradients in the
surface atom concentration and diffusion flux.
On the other hand, at large {, where the wall
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approaches a completely catalytic condition
[z(0, &) — 0], (48) and (49) predict the correct
asymptotic behavior since

w0 (X) > wy = 0-475c3 when A’ 0.

The foregoing approximation enables a very
simple and rapid calculation of the atom con-
centration and diffusion flux distributions along
the surface. By specifying the concentration
[obtaining A’ and w, for a given A from {(49) and
Fig. 2, respectively], the streamwise station {(x)
corresponding to it may then be found from
(48). To evaluate the accuracy of the method,
application has been made to several cases of flat
plate flow previously treated by the full series
solution; a comparison of the two theories,
shown in Fig. 9, indicates an excellent agreement.
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Indeed, it is seen that the first approximation
based on A = A gives a close representation
of the first ten terms of the series solution for
{ < 1. The approximate local theory also gives
the proper behavior when { > 1, correctly
merging into the local similarity solution when ¢
becomes slowly varying at large x. From these
results, it may be concluded that the proposed
approximate method of extrapolating the first-
order solution te arbitrary values of x will
provide an accurate description of the com-
position field around plates, cones, and wedges
when the surface catalycity is distributed accord-
ing to the power law (31).

5. CONCLUDING REMARKS

In this paper, we have studied some new
solutions to the diffusion equation for frozen,
dissociated, laminar boundary-layer flows over
bodies with an arbitrary continuous distribution
of first-order atom recombination rate along the
surface. The analysis extends the theory of
Chambré and Acrivos to plate, wedge, and cone
flows along which the surface Damkohler
number varies as any power or polynomial
function of the streamwise distance. It was
shown that these exact solutions, which take the
form of power series that are easily evaluated on
a desk calculator, satisfactorily describe a signi-
ficant portion of the variations in atom concen-
tration and diffusion heat transfer due to variable
surface catalycity. Moreover, by imposing the
assumption of local similarity in the velocity
profile, these series solutions were shown to be
good approximations for hypersonic flows
around highly cooled blunt bodies with varying
surface catalycity around the nose.

An approximate solution, based on an
empirical method devised by Rae [20] for gas
phase reactions, was also given. It provides an
extremely simple closed form representation of
the exact series solutions throughout the entire
flow field by means of a local nonlinear extra-
polation of the leading series terms. It was
shown by several examples that this method
yields very accurate results for the distribution of
atom concentration and heat transfer along the
surface for a variety of streamwise variations
in wall catalycity.

Although the present analysis considers only
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first-order atom recombination, it may be readily
extended to higher-order surface reactions by
appropriately generalizing the treatment of
Chambré and Acrivos. Moreover, it may be
noted that the approximate technique of a local
nonlinear extrapolation of first-order series
solutions developed here for continuously
distributed surface reactions is also applicable
to flows which discontinuously varying surface
catalycity [8].
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Résumé—Cet article étudie plusieurs types nouveaux de solutions exactes, développées en séries,
de ’équation de diffusion d’écoulements de couches limites laminaire, dissociée et chimiquement
figée autour d’obstacles, avec distribution continue de vitesse de recombinaison atomique du premier

ordre le long de la surface.

On considere les écoulements autour de plaques, de diédres et de cones. L’analyse étend la théorie
de Chambré et Acrivos, valable pour une efficacité catalytique et une température de surface con-
stantes, au cas oll le nombre de Damkohler varic comme une puissance de la distance, ou au cas ol ce
nombre est distribué sous forme polynomiale en puissances positives, entiéres ou fractionnaires, de la
distance. D’ailleurs, en faisant I’hypothése d’une similitude locale dans le profil de vitesse, les solutions
s’appliquent également, avec une bonne précision, 4 des corps émoussés hautement refroidis en

écoulement hypersonique.

Une méthode de résolution approchée est également étudiée, elle donne une forme analytique
extrémement simple des solutions en series exactes a travers le champ complet de I'écoulement, au
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moyen d’une extrapolation locale-non linéaire du terme principal de la série. Plusieurs exemples

montrent que cette technique fournit des résulitats trés précis en ce qui concerne la concentration

atomique, le flux de diffusion, la distribution des échanges thermiques, pour un certain nombre de
variations de P'efficacité catalytique de la paroi dans le sens de ’écoulement.

Zusammenfassung—Die Arbeit behandelt verschiedene neue Typen exakter Reihenlésungen der
Diffusionsgleichung fiir chemisch eingefrorene, dissoziierte, laminare Grenzschichtstromungen an
Korpen mit beliebiger, kontinuierlicher Verteilung Atomrekombination erster Ordnung entlang der
Oberfliche. Platten-, Keil- und Kegelstromungen wurden untersucht. Die Analyse erweitert die
Theorie von Chambré und Acrivos fiir konstante katalytische Oberflichenwirkung und Temperatur auf
den Fall, dass sich die Damkohlerzahl der Oberfliche nach Potenzen der Entfernung éndert oder als
Polynom ganzer oder gebrochener positiver Potenzen des Abstandes vorliegt. Dariiber hinaus lassen
sich die Losungen, die mit der Naherung erzielt wurden, dass fir die Geschwmdlgkeltsproﬁle
ortliche Ahnlichkeit vorliegt, mit guter Genauigkeit auf stark gekiihlte stumpfe Koérper in Hyper-
schallstromung anwenden.

Ebenfalls dargestellt wird eine Methode zur ndherungsweisen Losung. Durch lokale nichtlineare
Extrapolation des Fithrungsgliedes der Reihe ermoglicht sie eine extrem einfache, geschlossene
Darstellungsform der exakten Reihenldsungen im ganzen Stromungsbereich. Einige Beispiele liefern
mitdieser Technik sehr genaue Ergebnisse fiir die Atomkonzentration an der Oberfliche, den Diffusions-
strom und die Verteilung des Wirmeiiberganges fiir mehrere Variationen der Katalysierwirkung der

Wand in Stromungsrichtung.

ABHOTamMA—B TaHHOK CTaThbe paccMaTPMBAETCH HECKOJNBKO HOBHIX TUIMOB TOYHHIX PelleHuit
R BUAE PAAA ypaBHeHMA AnPPYsun AIA XUMHUYECKN B3aMOPOKEHHHBIX AUCCOLMMPOBAHHLIX
JIAMWHAPHHIX JIOTPAHMYHHIX CI0€B Y TeJ € IPOMSBOJBHHIM HENPEPHIBHEIM pacHpefeleHuen
CKOPOCTH PeKOMOMHALM TIEPBOTO HOPAAKA aTOMOB BIOJIb TOBepXHOCTH. IIpuBOIATCA Cirydan
00TeKAHNA MIACTHHSL, KINHA 1 Kouyca. Jlanusie 1lla6ps u AKpHBO s ciydasi HOCTOSHHOMN
KaTasuTHdeckodl 5PEPEKTMBHOCTH I TeMIleparypsl HOBEPXHOCTH MCHOJB3YIOTCH [IA CIyYas,
KoT#a 4ucio JlaMkelepa Ha IOBEPXHOCTH U3MEHAETCHA KaK jq06ad CTeleHb PACCTOSHHMA MIIN
Kak M0G0 IOJNHOM, cogep:Kaluil esbie MIU JpPoOHEE (IIONOMMUTEIbHBIE) CTENEHH pac-
crosgHuA. KpoMe ToTO0, IMyTeM MCIOIb30BAHNA NPUOIMAKEHEA JOKAILHOTO NORO0UA B mpoduie
CKOPOCTH YIOJIyYeHHBle PeHIeHUA MOKHO ¢ XOpomlell TOYHOCTBHIO MPUMEHATH TaKMKe 1k MHTeH-
CHBHO OXII3M{EHHBIM TYUBIM TeJIaM B CBePX3BYKOBOM IIOTOKE.

PaspaboraH Tawme NPUOHIKEHHEI METOX peIleHMA, KOTOPHIA [3eT BOBMOMKHOCTb C
OMOIIBIO JIOKATBHON HEMNHEHHOI HKCTPANIOIALINN IIABHOTO YjIeHa PAJA NOJY4YNTh 110 BCEMY
MOJI0 TEYeHUA YPE3BHUARHO ITPOCTHe IPEACTABICHNA B 3aMKHYTOI GOpMe TOYHBIX pelneHuit
B Buje pAKoB. VMeeTcA pAX MOATBEPHIeHU) TOTO, YTO JAHHAA TEXHMKA pacueTa JaeT oYeHb
TOUHBIE PE3YJBTATHE [IPU ONPENEJeHNM KOHICHTPAlMU aTOMOB Y IIOBEPXHOCTH, IJIOTHOCTH
auPPYSMOHHOIO MOTOKA M DACIpeReNICHUA [epeHOCA TeIula IPH PAasINyHOM M3MeHeHHU

BJIOJIb II0TOKA KATAIMTHYECKON aRTHBHOCTH CTEHKH.



