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Abstract-This paper studies several new types of exact series solutions to the diffusion equation for 
chemically-frozen, dissociated, laminar boundary-layer flows around bodies with arbitrary con- 
tinuous distributions of a first-order atom recombination rate along the surface. Plate, wedge, and 
cone flows are considered. The analysis extends the theory of Chambrk and Acrivos for constant 
surface catalytic efficiency and temperature to the case wherein the surface Damkohler number 
varies as any power of the distance or is distributed as any polynomial involving integer or fractional 
positive powers of the distance. Furthermore, by imposing the approximation of local similarity in the 
velocity profile, the resulting solutions are also applied with good accuracy to highly-cooled blunt- 
nosed bodies in hypersonic flow. 

An approximate method of solution is also developed which provides an extremely simple closed- 
form representation of the exact series solutions throughout the entire flow field by means of a local 
nonlinear extrapolation of the leading term in the series. It is shown by several examples that this 
technique yields very accurate results for surface atom concentration, diffusion flux, and heat-transfer 

distributions for a variety of streamwise variations in the wall catalycity. 

NOMENCLATURE 

a, exponent for power-law inviscid 
flow (16); 

A,, A;, series coefficients (22) and (32); 
a,, a4, a,, coefficients in blunt body flow 

solution (37); 
6, exponent for power-law inviscid 

flow (16); 
% coefficients in series representation 

Damkohler number distribution 
(27) ; 

4, B;, coefficients in power-law Dam- 
kohler number distribution [(3 I), 
Fig. 31; 

BS? stagnation point velocity gradient 
Kdue/dx)sl ; 

b2, b,, b,, coefficients in blunt body solution 
(38); 

C, Chapman-Rubesin parameter 
(PCLI PePe) ; 

G, constant pressure specific heat; 
CP, average specific heat of mixture; 

* Member Technical Staff, Aerophysics Department, 
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c,, c4, cs, coefficients in blunt body flow 

d, 

g, 
h, 

G 

Le, 

m, 

P9 
Pr, 

solution (40) ; 
exponent in power law distribution 
of J&&Q, (34) and (38); 
We ; 
total temperature-sensitive enthalpy 

(e,T+ ;); 
specific dissociation energy; 
integral defined by (11) ; 
integral defmed by (19); 

integrals defined in (21) ; 
speed of first-order atom re- 
combination on body surface; 
parameter defining Kw/pw varia- 
tion around a blunt body (Figs. 7 
and 8) ; 
Lewis number (Pr/Sc); 
exponent for power-law inviscid 
flow (16); 
static pressure; 
Prandtl number ; 
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qw, total heat-transfer rate per unit area; 
&cm, diffusion heat-transfer rate per unit 

area; 
f , exponent for power-law inviscid 

flow (16); 
&I blunt body nose radius ; 
I’o, local body radius (Fig. 1); 
Se, Schmidt number, 
K static temperature, absolute; 
a, flow velocity in x-direction (tangent 

to body) ; 
4 .Y> streamwise and normal body co- 

ordinates (Fig. 1) ; 
Z, ah. 

Greek symbols 
atom mass fraction (PA/~); 
series solution parameter (22) and 
(23) ; 
frozen specific heat ratio of mixture; 
surface Damkohler number (atom- 
diffusion time/surface-recombina- 
tion time); 
normai si~~~i~ co-ordinate (1) ; 
boundary layer stream function ; 
exponent in power-law Damkohler 
number distribution; 
viscosity coefficient; 
streamwise similarity co-ordinate; 
mixture mass density; 
wall gradient function (Fig. 2). 

atom; 
completely catalytic wall solution; 
conditions at edge of boundary 
layer ; 
molecule ; 
reference value ; 
stagnation point conditions : 
conditions on wall. 

1. ~TRODUC~ON 

SOLUTIONS to the diffusion equation for chemi- 
cally-frozen, dissociated, laminar boundary- 
layer flows over catalytically-reacting surfaces 
have been studied extensively for constant sur- 
face temperature, catalytic efficiency, and first- 
order atom recombination [l-7]. These analyses 
entail various approximate methods of solution 
as well as a class of exact solutions given by 

INGER 

Chambre and Acrivos 121. Recently, Chung 
et al. [8] have further extended the theory to 
include the effects of arbitrary variations in 
catalytic efficiency along the surface for a fairly 
general class of bodies, using both the integral 
method and a modification of a technique de- 
veloped by Lighthill [9, lo]. However, it is 
clearly of interest to obtain some exact analytical 
solutions that account for varying surface cata- 
lytic efficiency in order to appraise the accuracy 
of these approximate methods. Moreover, since 
the analyses mentioned frequently involve a 
good deal of numerical work in specific applica- 
tions, analytical solutions are very useful in 
clarifying the physical behavior involved. The 
object of this paper is to describe both exact 
and approximate closed-form solutions to the 
boundary-dyer diffusion equation in the presence 
of body surfaces with a first-order atom recom- 
bination rate that is distributed in any arbitrary 
continuous manner and to compare the results in 
various specific applications with those obtained 
by the integral, Lighthill, and local similarity 
methods. 

Exact solutions will be developed for flat plate 
Row, incompressible flow over wedges, and 
supersonic flows around wedges or cones where- 
in the surface Damkohler number varies either 
as any power of the distance or is distributed as 
a polynomial in the distance. These solutions 
constitute a direct extension of Chambre and 
Acrivos by analogy with the Chapman-Rubesin 
treatment of heat transfer to non-isothermal 
surfaces [II]. To be sure, Chambre and Acrivos 
have pointed out the possibility of these obvious 
generalizations of their theory for constant cata- 
lytic efficiency and wali temperature; however, 
the actual analysis has not in fact been carried 
out and is therefore presented here. Further- 
more, by imposing the assumption of local 
similarity in the velocity profile, it will be shown 
that the method may also be applied with good 
approximation to the case of hypersonic 
flow over highly-cooled bodies. Application to 
the particular case of blunt-body flow with 
varying surface catalycity around the nose will 
be made in detail. 

The exact solutions take the form of power 
series in the streamwise co-ordinate along the 
body. In many cases of interest, it will be shown 
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that they satisfactorily describe a large portion 
of the effects due to varying catalycity along the 
surface. Nevertheless, the entire region of physi- 
cal interest usually cannot be conveniently 
analysed by these methods because either a 
limited radius of convergence exists in certain 
cases or the use of a prohibitive number of 
series terms becomes necessary. Therefore, an 
approximate method is set forth for carrying the 
exact solutions forward throughout the entire 
flow field by means of a local nonlinear extrapo- 
lation of the leading term in the series solutions. 
This technique yields very simple closed-form 
relations for the atom concentration and diffu- 
sion along the surface. It is shown by several 
examples that the technique predicts the full 
exact solution (where appli~ble) very accurately 
and is also in good agreement with the predic- 
tions of other, more complicated, approximate 
solutions. 

2. GOVERNING EQUATIONS IN THE SIMILARITY 
PLANE VARIABLES 

A. Basic relations 
Consider laminar boundary-layer flow of a 

dissociated binary gas mixture around a two- 
dimensional or axially-symmetric body (Fig. 1) 
with an arbitrary distribution of the atom recom- 
bination rate along the surface. The flow is taken 
to be chemically-frozen throughout (gas phase 
reactions absent) and the velocity distribution 
across the boundary layer is assumed locally 
self-similar and independent of the solutions to 
the energy and diffusion equations. Then, by 
introducing the well-known similarity co-or- 
dinates 

0, two-dimensional 
1, axisymmetric (1) 

and the assumptions 

pf.5 = constant = Cpepe 

CPA = CPM = constant = G 

(2a) 

(2b) 

Kw 

Qo 
PLATE 

iSHOCK 

43 - 

WEDGE OR CONE 

BLUNT BODY 

FIG. 1. Flow configuration. 

the diffusion and energy equations of the boun- 
dary layer for constant Schmidt and Prandtl 
numbers can be written as follows: 

(3) 

ag 
+ 2Prf ‘5 ag (4) 

where a prime (3 denotes di~ere~tiation with 
respect to 9, z = a/a,, g = ~~~~ (h G C?pT -+ 
u2/2), andf(n) is the boundary layer stream func- 
tion (f’ = z&J. The boundary conditions on 
(3) and (4) are 

.f’(=Jf = z(m, n = s(m, 0 = 1 

and, at the wall 
(5) 

Y(O) = f'(O) = 0, gOA 8 = gw@ (6) 
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where Kw is the speed of the atom recombination 
reaction on the surface (a function of the given 
surface material and temperature distribution). 
Equation (7) expresses the fact that the atom 
diffusion flux from the gas to the wall is equal to 
the net rate of atom recombination on the sur- 
face, here assumed to be a first-order reaction. 
The parameter c(f) may be interpreted as a local 
ratio of atom-diffusion time to surface-recom- 
biuation time (Damkohler number), which 
determines the relative effects of surface reac- 
tion and gaseous diffusion on the atom concen- 
tration profile. When 5 < 1, the distribution of 
atoms is primarily controlled by the (small) 
surface recombination rate in such a way that, 
in the limit 5 == 0, the diffusion flux vanishes, 
leaving a uniform atom concentration ~(7, .$) = I 
across the boundary layer. On the other hand, 
for i 9 I, the atom distribution is controlled 
by diffusion in such a way that the surface 
becomes an infinite sink for atoms [z(O, 0 = 01, 
with az/ar, (0, [) finite in the limit 5 -3 m. 

Once the diffusion and energy equations are 
solved, the local surface heat-transfer rate & 
may then be calculated from 

where ho is the dissociation energy of the gas 
and Le is the Lewis number (h/SC). 

Equations (3)-(7) constitute a two-point 
boundary value problem that requires the solu- 
tion to a set of linear partial differential equa- 
tions when g&S) and &!) are arbitrary functions 
of 5. The linearity of these equations is, of course, 
a consequence of the assumptions concerning 
pp and f(T). Now, it has been shown that, when 
C and cp are suitably chosen, equations (2) 
are good approximations for determining sur- 
face phenomena such as heat transfer, diffusion 

rate, and atom concentration [12, 131. On the 
other hand, when pp = constant, the assumption 
that the boundary layer velocity profile is self- 
similar and independent of z and g is, in fact, 
exact for supersonic flow over wedges and cones 
{f’ = Bfasius function) or incoinpressibie wedge 
flows (Falkner-Skan solutions). Moreover, with 
the exception of highly adverse pressure gradient 
regions, this assumption has proved to be a 
reasonably good engineering approximation for 
various types of bodies in hypersonic flows, 
including highly cooled blunt bodies f 12, 14, 
151. 

As a result of assumption (2b) [ 151, the energy 
equation is uncoupled from the diffusion equa- 
tion and the solution to each may therefore be 
regarded as a separate problem. Now the solu- 
tion to (4) depends onty on the momentum 
equation fin), the assumed distributions of wall 
temperature, and the inviscid flow velocity, and 
has been given for various cases by numerous 
authors [9-13, 15, 165. Therefore, for the purpose 
of evaluating the effects of variable surface 
catalycity on the atom concentration, di~usion, 
and the heat transfer at the wall, our interest 
clearly Iies in solving (3), (6), and (7) with 
i(f) an arbitrary function of [. 

The boundary condition (7) associated with 
the boundary layer diffusion equation (3) does 
not admit a self-similar solution z -_ z(q) 
when KLL’, W, pe, pe, rO, and ue are arbitrary 
functions of 6 or x. Before treating this general 
case, however, let us briefly review the class of 
problems in which a similarity solution can be 
obtained. This occurs when 5 = constant := I& 
and the term azjaf in (3) may be dropped to give 
the ordinary differential equation 

Scfi’ +- z”*=*O. (9) 

The solution subject to the boundary conditions 
(6) and (7) has previously been given by Goulard 
[17] and is 

WW 
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where 

I(T) E J; exp (--SC f; fd7) dv.* (11) 

Hence, for a completely non-catalytic wall 
(5 = O), 

z’(0) = 0, z(v) = 1 04 

whereas, in the opposite extreme of a completely 
catalytic wall (5” -+ co), 

z;(o) = z(coy. (13) 

The solutions (10) with 0 < Co < co pertain to 
all frozen boundary-layer flows for which the 
streamwise variations in inviscid flow properties, 
wall temperature, and catalytic efficiency are 
such that 

5 _ UC; 
Fu: d[ 

(14) 

that is, where the velocity of atom recombination 
on the surface decreases with increasing E at the 
same rate as the boundary-layer diffusion flux. 
Now, by equations (1) and (lob), the actual atom 
concentration gradient at the surface in the 
physical plane is 

which becomes infinite at the origin when 5,, # 0 
unless the wall temperature (Pi) is appropriately 
distributed. To illustrate, consider the general 
class of flows for which pepe - ~a, pw - ~0, 

ue N xm, and r,, N xf’ (a, b, m, and r being ar- 
bitrary constants). Here, self-similarity exists 
when the surface catalyticity is distributed as 

_(!+I%) (Iin-m-26) 

I& N x N 5-2(1+a+m+2w) (16) 

so that 

~-- $ (0, 6) N x- (‘+2bTm) 2 (0, 5) 

(1+2b-o-m) & 

N [-2(l+a-tmf2sr) a7 (0, [) (17) 

* When f(v) is taken to be the Blasius function, 
Z(m) z (0.47 wiy. 

will become infinite at x --f 0 unless 2b < 
-(l - m) + a. Physically, this condition re- 
quires that the diffusion coefficient of the gas 
approach infinity rapidly enough at the origin 
to either balance or overcome the increase in 
diffusion flux due to the vanishing boundary 
layer thickness. We note, however, that a self- 
similar solution having a finite az/Q (0, 0) does 
exist under isothermal (b = 0), iso-catalytic 
(K, = constant) conditions in the special case 
of stagnation point flow (a = 0, m = 1) since 
the boundary layer thickness does not vanish at 
x = 0. 

Although the relations (10) are exact only when 
5 = constant, by invoking the idea of local 
similarity, they can also be made to serve as 
approximate solutions when the Damkohler 
number varies along the surface [ 12, 14, 151. 
The local similarity concept is based on the 
argument that, when C(6) is sufficiently slowly- 
varying, one should be able to approximate the 
exact non-similar solution at each E by using (IO) 
in conjunction with the appropriate local values 
of c(t). The conditions under which the flow 
may be considered slowly varying can be defined 
by an examination of the diffusion equation (3). 
Byemployinganintegratingfactorexp(Sc &fdv), 
formally integrating this equation twice, and 
employing the boundary conditions (5) and (7) 
one obtains 

1 - 2Sc& (d/&3 W4J 
z(0, 0 = --- 

1 t IZ(cQ) 
(18) 

where 

[]a exp (+Sc J; fdrl)f’z drll dq. (19) 

Now, by approximating z(~, 5) in S(T) by the 
local similarity value, for the purpose of esti- 
mating the contribution of the non-similar 
term to (18, one obtains 

do, 0 

- 
1 

2% 

+ 5 W/W 4~) &(a) 1 + qa)5 1 + 6,( ~0) 1 U(a) 
1 + CZ(~) 

(20) 
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where where the A, are constants and n, 13 are integers 

~&(~I = ];1 exp (--SC ]a f’drl) 
with j3 fixed over the summation. By substituting 

U ;i exp (SC f2 fd?)f’ &I dri CW 
(22) into (3), it is found that the Z%(q) must 
satisfy the ordinary differential equation 

exp (-SC j; f dq7) 

exp (SC J;i .fdT) ;p;$ dv 
I 

dq (21b) 
sL$z; -+- 2;’ - 2 !; sej-zn = 0. 

0 
(23) 

0, when SC <. 1 (11). According to The boundary conditions (6) and (7) require 

(201, the local similarity approximation will be 
accurate when the second term in the numerator 
is small compared to unity. Evidently, this con- 
dition is always satisfied when 5 >> 1, that is, 
when the local surface is highly catalytic. How- 
ever, it is not necessarily satisfied when 5 5 1; 
hence, local similarity may not be very accurate 
when the surface recombination rate is small. 
Moreover, it is clear from (20) that local simi- 
larity will never hold in the vicinity of very 
abrupt changes in surface catalycity. 

3. EXACT SOLUTIONS FOR ARBITRARILY- 
DISTRIBUTED SURFACE CATALYCITY 

The diffusion equation (3) has been solved in 
[2] for flat plate and incompressible wedge flows 
when the catalytic efficiency and temperature 
are constant along the surface. However, it is 
clear by analogy with the theory of Chapman 
and Rubesin [I I] that the solution is readily 
generalized to arbitrary but continuous distri- 
butions in K&.J~:. This extension will now 
be given for the important case of a first-order 
atom recombination rate on the surface. (More 
complicated, higher-order, surface recombina- 
tion mechanisms could also have been treated 
in a similar manner if desired.) It should be 
noted that the present formulation is a more 
general one than that in 121 because it includes 
the Mangler and Stewartson-Illingworth trans- 
formations and is therefore applicable to super- 
sonic fiows around cones and (approximately) 
to hypersonic flows over slender and blunt- 
nosed bodies. 

A. Analysis 
As suggested in [II], a general solution to (3) 

is sought by separation of variables and super- 
position of particular solutions. Accordingly, a 
solution of the following form is assumed: 

Z(% E) = 1 ‘,X0 A?P’@ Z&If (22) 

and 

X AnPs z;(o) = IX0 [I + XJ,W zd0)1(25) 
II-0 
where it is convenient to take 

Z%(O) = 1 (26) 

leaving Z;(O) to be determined. Now (25) is 
satisfied by all Damkohler number distributions 
(including the effect of variable IZzU/~UI) of the 
form 

c(t) = 2; BK@@ (IC an integer) 
K_=lJ 

(271 

when the A, are determined from the Z:(O) 
and the coefficients B, as follows: 

Thus, (22) is an exact solution to (3) whenever 
{ is a Taylor or fractional power series in 5. The 
atom concentration at the wall and the gradient 
normal to the surface are given by 



The local heat transfer due to diffusion is then 
given by dwD = (&z~a~/Sc)~z/~y(O, 5). Since 
Z;(O) = -[1(co)]-l, (lob) shows that the 
leading terms in (29) and (30) are the similarity 
solutions pertaining to a uniform surface 
catalycity 5 = 5,, = B,. Therefore, (30) yields an 
infinite diffusion heat transfer at 4 = 0, unless: 
(a) pw times the coefficient of the bracketed 
term is a constant or vanishes at 6 = 0 when 
B, # 0, or (b) the surface at the origin is com- 
pletely non-catalytic (B, = 0) and the rate at 
which 5 approaches zero at the origin is suf- 
ficiently large to balance or overcome the 
corresponding effect of the vanishing boundary 
layer thickness. As an example, for the class 
of inviscid flows and body shapes defined above 
in connection with (16) condition (a) gives 
0 < - (1 - m) + a, while condition (b) requires 
that 

O<fi< 
2(a+m+ 1 +22EY) 

l-a-m -’ 
m # 1. 

When 5 varies as a single power of the distance, 
that is, 

5 = B,# (31) 

where BA is a constant and h is any non-zero 
positive or negative number, two special cases of 
the foregoing general solution can be found by 
writing az/at = (az/zlaQ (d[/dk) in (3), assuming 
series solutions in ascending positive or negative 
powers of 5, and then proceeding in the same 
manner as described above. The resulting solu- 
tions are 

An = (BJn A:, = _- n 
BZ 

9 (X>O) 
11 Z!(O) 

i=O 

and 

~(7, 5) = z&/l> + ,,Xi A;5-n Zn(7) 

= zc(rl) + c AnP Z(v) 
n=l 

n=l 

I n z;(o) 
An = ;; = _ + ~_~, (A -=E 0) \ n n 

7 
I 

it > 32 

J 

(33) 
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where Zn(y) and Z:(O) are obtained from (33) 
by replacing /3-l with [Al. The solutions (32) for 
h > 0 involve an increasing surface catalycity 
along the body and were previously obtained by 
Chambre and Acrivos for constant Kw/pw on 
either isothermal flat plates (A = l/2) or wedges 
in incompressible flow 

[h = (1 - m)/2(1 + m) = (1 - Q/2, 

where n6 is the wedge apex angle and ue N xm]. 
However, the present theory further includes the 
general class of flows cited in connection with 
(16) as well as any variation of catalytic effi- 
ciency and temperature along the surface for 
which Kzo/pw w xd (d = arbitrary constant), by 
merely adjusting X according to 

I+a+2d-m A = ~____~~~_ _. 
2(1 + a + m + 2~) (34) 

provided d > - [(1 + a + m)/2], (h > 0). For 
such flows, (17) and (32) indicate that there is 
no singularity in diffusion heat transfer at the 
origin, provided 

/$ > _-1L2zm _~ 
2(1 + a + m + 2~) ’ 

(i.e. d 3 -a). (34) 

The solutions (33) for X < 0 are apparently new 
and represent how along a surface whose cataly- 
city is decreasing with distance. It can be seen 
from (17) and (33) that these solutions yield 
an infinite diffusion heat transfer at the origin 
regardless of the value of h unless 

0 < -(l - m) + a. 

The boundary value problem (23, 24, 26) 
possesses unique solutions for all values of 
n/p > -l/2, and these have been studied 
extensively by various investigators for both plate 
and incompressible wedge flow boundary-layer 
velocity distributions [ 11, 181. Therefore, Zn(~) 
and Z;(O) may be regarded as known functions 
in the present analysis. A plot of Z;(O) versus 
n//3 and SC based on the Blasius profile is given 
in Fig. 2 to illustrate the typical behavior of the 
gradient function. It may be seen from Fig. 2 
and Cauchy’s ratio test [19] that the series 
solution (32) for the special class of flows (31) 
is absolutely convergent for all 5(t), although 
the convergence becomes slow when 5 2 1. On 
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I.6 

0 2 4 6 8 IO 12 14 16 

n/P 

FIG. 2. Wall gradient function Z,‘(O). 

the other hand, by the same criterion, the series 
(33) for h < 0 is found to be divergent for all 5; 
however, a more detailed study shows that this 
series is, in fact, of a semi-convergent character. 
in view of this property, and since (22) and (32) 
cover most of the problems of practical interest, 
these solutions for A < 0 will not be considered 
further in this paper. 

In the case of polynomial Damkohler number 
distributions, the comparison test shows that the 
series solution (22) will converge over a given 
region whenever (27) is also convergent in this 
region and A, < Bn, although this condition 
becomes unnecessarily restrictive when (27) 
involves only a finite number of terms. However, 
one cannot formulate any general criterion for 
this convergence requirement, since the A, 
depend not only on Bn but also on all the 
B,,--l and Alaw as well; each specific type of 
distribution must be evaluated individually. It 
will be shown below that the solutions for this 
class of distributions in catalycity are of practical 
interest. 

B. Example application: jat plate jlo~~ 
Steady laminar boundary-layer flow on a flat 

plate or a wedge in supersonic flow 

(m = a == E = 0, [ = CpBpeu,x) 

is a particularly convenient and yet representa- 
tive physical model with which to illustrate the 
salient features of the foregoing exact solutions 

for various types of Damkohler number dis- 
tributions. In particular, it is of interest to 
examine variations in surface catalycity along the 
plate of the type (31) by assuming 

B 
h 

_ _/t2) SC KwO 

Here, it is convenient to switch from .$ to x by 
writing 5 = BAfx = B;x~ where 

and h := (l/2) + d. Typical distributions of the 
atom concentration and diffusion heat transfer 
along the plate surface, as given by the 
first ten and fifteen terms of the series (31), are 
shown in Figs. 3 and 4, respectively, for 
SC = 0.72 and h = l/2 [2], 1, 3/2, and 2.* The 
abscissae and the ordinates of the diffusion 
curves used in these figures were chosen because 
they render the solutions in a universal form 
applicable to any combination of the inviscid 
flow and gas properties. It is seen that the first 
ten series terms are sufficient to accurately 
describe more than 50 per cent of the maximum 

* Using a desk calculator, each of these cases required 
less than an hour to compute for the range of x and 5 
shown in Figs. 3 and 4. 
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0 0.2 0.4 06 0.8 I.0 

APPROXIMATION 

Zdfl 

SC= 072, 5 +p =B!&X -T 

FIG. 3. Variation of atom concentration along a plate for power law distributions of the surface catalycity. 

total decrease in atom concentration and 75 per 
cent of the corresponding increase in heat trans- 
fer (the variation in the former appreciably 
lagging behind the latter) that can occur down- 
stream of the non-catalytic leading edge because 
of the increase in Damkohler number with X. 
To be sure, the slow convergence of the series 
for 5 > 1 generally limits the usefulness of the 
solution in terms of x to a relatively small region 
near the leading edge. Nevertheless, when judged 
on the basis of the streamwise variations in 
surface phenomena that can be analysed, these 

exact series solutions provide an easily calculated 
and relatively simple description of a significant 
portion of the flow field for surface reaction 
distributions of the type (31). There are also 
shown in Figs. 3 and 4 the locat similarity 
solutions appropriate to each h, the approximate 
surface atom concentration distributions ob- 
tained by Chung et al. [8] for X = 1 and 312 using 
a modified Lighthill method, and the result for 
A, = I /2 obtained by Chung and Anderson [6] 
by an integral method. In view of (20) and the 
rapid variations taking place downstream of the 
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-, 
APPOXIMATION I 

1 I ’ I 
0 I 

0 0.2 0.4 0.6 0.8 I.0 

2 
(B’)zd+’ .x A 

0 0.2 0.4 06 0.8 I.0 
2 

(8’) 2d+’ , x 
A 

sc=on, 5 

0~6,~1 d= l/2 (X=l)‘r-----, 

0’ ! i I I 
'0 0.2 0.4 0.6 0.8 I.0 

2 
(q)zd+’ .x 

COMPLETELY 

0.4 0.6 0.6 I.0 
2 

(B’)‘O +I .x 
x 

FIG. 4. Variation of diffusion heat transfer along a plate for power law distributions of the surface catalycity. 

leading edge, local similarity yields an under- above the corresponding local similarity solution. 
standably poor quantitative approximation to Note, however, that the exact solutions do tend 
both ~(0, x) and &jay (0, x) in these examples to become parallel to the local similarity curves. 
(except for extremely small x), the inaccuracy On the other hand, the results of [6] and [S] are 
increasing with X. As predicted by (20), the non- seen to be in good agreement with the present 
similar effect causes the value of ~(0, x) to lie solutions, which supports the generally accepted 
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FIG. 5. Comparison of exact solutions for a flat plate and cone, 

confidence in the accuracy of the Lighthill and 
integral methods.* 

It may be seen that the solutions for a 
cone in supersonic flow [E = I = 1, m = a = 0, 
4 = Cp,p8ue (sin2 S/2) (x3/3)] differ from the 
foregoing in only two respects: a value of 
h = (1/3)Xpiate = I/6 + dJ3 is used in obtaining 
the Z:(O) in (32), and B,’ = (~~)~~~~~/~3. Conse- 
quently, the distributions of ~(0, X) and owli 
along the cone surface for a given value of d, 
when plotted in the manuer of Figs. 3 and 4, will 
be quite similar to the results for a flat plate. 
This is illustrated in Fig. 5 for the case d = 1, 
where solutions for both a plate and cone are 
presented. 

By ass~ing a locally self-similar boundary 
layer velocity profile, equations (19) and (29) 
may also be used to described (approximateIy) 
the effects of finite surface catalycity on frozen 
boundary-layer Aows over bodies other than 
plates, wedges, or cones. An important example 
of such an application is the s~~ation-region 
flow around a blunt body in a hypersonic stream. 
Here, an exact similarity solution to the diffusion 
equation does not exist do~stream of the stag- 
nation point because of the strong inviscid 
--________ -_____ 

* These results were kindly provided by P. M. Chung 
and S. W. Liu in a private ~mmunication. 

30 

pressure gradient associated with the rapid ex- 
pansion around the nose. We shall now show that 
the present solution for a pol~o~alIy distri- 
buted ~amko~er number is capable of 
describing satisfactorily this non-linear behavior. 

Consider the sta~ation region of a hemisphere 
or cylinder (Fig. 1) and regard the inviscid ffow 
as frozen in dissociation by the expansion 
around the body [U&X) = ug]. Here r0 = RB sin B 
and the local pressure can be represented by a 
Ne~o~an distribution 

PeW CO@ 0 1 82 3 ---------= N - 
Ps 

-/- .- 
4 

8” - &9G +. . . ‘ 

(35) 

This series representation gives a good approxi- 
mation up to B ;L 60”; more terms could, of 
course, be included to go further around the nose 
if desired. From the isentropic relation 

*- 
p_“= pey* 
PS 0 Ps 

and the inviscid momentum equation, the cor- 
responding focal velocity is 
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where 

G. R. 

and pe is the frozen specific heat ratio for the 
inviscid flow. For the purpose of illustrating the 
essential features of the solution, we postulate a 
linear viscosity-temperature relationship for the 
inviscid flow and consider variations in Kw/pw 
long the body of the form 

Kw Kw, -= 
PW 

_ (1 + KP) 
CL% 

(where Kl and d > 0 are arbitrary). Then, from 
(1) and (7), respectively, are obtained 

+ (&)aP- (%)a,@‘+...] 

W) = Ml + KP) 

+b,;-b,e6 y+... I 

(37) 

(38) 

where a,, a*, a,, bz, b,, and b, are given as 
functions of 7e and E in Table 1, and where 

The variation of this parameter with flight 
conditions and surface catalycity is illustrated 
in Fig. 6. Equation (38) is valid as long as 
5 >, 0. Now, (37) may be inverted to obtain 
0 = e(E’) [19], and the Damkohler number 
distribution thereby expressed as a function of 
E’; accordingly, there results 

S(6) = (~‘)W(l+c) [l + cz(f’)ll(W 

- Cq([‘)2’(l+c) + . . .] (40) 

INGER 

3 

5 I 
NOSE RADIUS 

z 

z 
VALUES TAKEN 

3 

10-l 

I 2 x I05 fpd 
/I 

uoD= I05 fps J 

‘07 50 200 250 
ALTITUDE, kft 

FIG. 6. Variation of surface reaction parameter with 

and 

5(P) -_ 
5s 

t- 

+ 

X 

+ 

- 

flight condition. 

= 1 - 2 (p)l/(l+t) 

(b, - 2c,b2) (t’)2’(1+r) -- . . . 

K&+/2 (l+r) 

( 
1 - (6, - dcJ ([‘)l’ (1’ <) 

i 
b, - 2c,b, - d cg + czb, 

jd$1) +I> (!Y(l+a) - . . .). (41) 

The values of c2 and cq are also shown in Table 1. 
It may be noted from this table that the co- 
efficients in (40) and (41) depend rather weakly on 
ye and, therefore, on a,. 

Since the polynomial (41) reduces to the form 
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ye = 1.1 

Coeffi- 
cient E=O c=l 

a2 1.148 1.815 
a4 0.982 2646 
h 0.766 2.948 
b, 0.278 0.247 
b, 0.035 0.217 
6, - 0.061 - 0.563 
C2 0.287 0.302 
Cd 0.098 0.166 

__ __zzz 

Table 1. Blunt body flow coefficients 

)?e = 1.25 

e=O E=l 

1.175 1.842 
1.021 2.703 
0.794 3.022 
0.238 0.211 
0.020 -0.229 

-O@l8 -0.575 
0.294 0.307 
0.101 0.168 

(27) for any value of d > 0, it is clear that solu- 
tions (28) through (30) may be applied to blunt 
body flows. As an example, let us consider the 
case d = 1, for which 

5(C) 5s = 1 + &([‘)l’” - &(E’)Z’fi 

- K*(& - CJ (6’)s’” 4 (b4 - 2c,b,) (5’)4’@ + # . . 

(42) 

with /? = 2(1 + l ). Whenf(q) is approximated 
by the Blasius function in the case of highly 
cooled walls [12], the leading terms in the series 
solutions for ~(0, 5’) and c&~ are 

_ - 

ys = 1.40 ye = 1.55 

E=O c=l r=O E=l 

1.196 1.863 1.214 1.881 
1.053 2.749 1.079 2.787 
0.816 3.081 0.834 3.129 
0.205 0.183 0.179 0.160 
OGO81 -0.239 -0GO14 -0.247 

-0.036 -0602 - 0.024 -0.590 
0.299 0.311 0.303 0.313 
0.104 0.170 0.106 0.172 

0*47sc1/3 
Z(O, E’) = @47Sc1/3 + & (1 - (-&) 4(5’P~ 

[ 

b,(w, + 5s) + % - 
% + 5s I 

~5‘,~3,p + 

==z(O,O)(l - (-&j KIti* 

. (43a) 
1 

and 

&&‘) = ~D’d-%z(0,0) 2/[c/‘s/&(l + <)I 

(3 + 9% 
+ 2(1 + e) 

> 
(5’)“‘P + . . . 

I 
(444 

fe = 1.67 

<=o <=1 

1.225 1.892 
1.102 2.817 
0.846 3.165 
0,162 0.144 

-0~011 -0.255 
-0aO97 -0.591 

0.306 0.315 
0.109 0.173 

+&++$}P+...] (44b) 

where We = -Z:(O). Here, the zero’th-order 
terms correspond to the self-similar stagnation 
point solution given by Goulard [17]. The com- 
plete solutions for the surface atom concentra- 
tion and diffusion heat-transfer distributions 
around a hemisphere, using series terms up to 
and including P, are shown in Figs. 7 and 8, 
respectively, for SC = O-72, a8 = 0.5 (7, = l-53), 
and various degrees of stagnation point cataly- 
city. For each I& solutions are shown for constant 
wall temperature and catalycity (Kl = 0) and 
also for both increasing and decreasing Kw/pw 
around the nose. For 5’ < 1 (0 < 57.39, these 
solutions converge very rapidly and were easily 
computed on a desk calculator. 

It is seen that, when Kl < 0, the expansion 
around the nose decreases the local surface 
catalycity relative to the stagnation point for all 
0 < Cs < co. This is because the Damkohler 
number decreases monatonically with 6’ as 
a combined result of the reduction in the 
boundary-layer diffusion time associated with the 
dropping pressure and rising velocity, and the 
increasing surface recombination time when 
Kl < 0 (38). When Kl < -1, the latter effect 
can substantially accelerate the approach toward 
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FIG. 7. Surface atom concentration distribution on 
the surface of a hemisphere. 

non-catalytic behavior downstream of the 
stagnation point even when & is large. On the 
other hand, the atom concentration and diffusion 
flux do not increase and decrease, respectively, 
in a monatonic manner around the nose when 
Kw/pw increases linearly with 0. Here, the in- 
creasing surface recombination rate competes 
with the effect of the inviscid expansion and 
initially increases the effective surface catalycity 
as the flow proceeds around the nose. At a 
certain value of 0, which increases rapidly with 
K,, ~(0, 0) and g,,(8) reach a minimum and 
maximum, respectively. This happens when the 
effect of the expansion eventually becomes large 
enough to balance out (and subsequently over- 
ride) the effect of increasing Kw/pw. It is clear that 
if Kw/pw is distributed quadratically in B(d = 2) 
a certain value of K1 > 0 would exist such that 
either the atom concentration or heat transfer 
would remain constant throughout most of the 

&,(O), respectively, would appear downstream 
of the stagnation point. Here, the surface would 
at first become effectively less catalytic with 
increasing 0 and then, beyond a certain distance, 
pass over to an increasingly catalytic behavior 
as the effect of Kw/pw attains predominance over 
the influence of the expansion. 

Unless (KII is large (2 l), Figs. 7 and 8 show 
the surface atom concentration and catalycity to 
be slowly varying with 6’ up to 8 RS 60” for all 
values of cS. Consequently, the local similarity 
approximations indicated in these figures are in 
understandably good agreement with the series 
solutions. (Of course, when K1 is not small and/or 
more rapid variations of Kw/pw with 0 are con- 
sidered, the local similarity theory will be far 
less satisfactory.) It may be noted that the 
variation of z(O,0) with 0 for any Kl becomes less 
pronounced when the stagnation point cataly- 
city approaches either of its two extreme values. 
Indeed, an examination of the leading terms in 
the series solution (43b) shows that ~(0, 0) -3 I 

e (DEGREES) 

nose region. When d 2 3 and Kl > 0, it is like- FIG. 8. Diffusion heat-transfer distribution around a 
wise clear that maxima and minima in ~(0, 0) and hemisphere. 
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when & --f 0 and z(O,0) -+ 0 when & -+ co for any 
finite K,.* It may, in fact, easily be verified that 
this limiting behavior is true for all types of 
K,/pw distributions in addition to the linear 
variation illustrated here. 

The results of Chung and Anderson for the 
Kl = 0 case, obtained by means of a von Kar- 
man-Pohlhausen integral method, are shown in 
Figs. 7 and 8 and are seen to be in excellent 
agreement with the present series solutions. 

4. EXTENSION OF THE SERIES SOLUTION TO 
THE ENTIRE FLOW FIELD 

Although the foregoing series solutions satis- 
factorily describe a significant portion of the 
change in surface properties due to varying 
surface catalycity, they are usually unsatisfactory 
for treating the entire streamwise extent of the 
flow field in many problems of interest because 
of the prohibitive number of slowly converging 
series terms that must be used. Consequently, it 
would be very useful to have a simple approxi- 
mate method of carrying these solutions fore- 
ward throughout the entire flow field. 

Recently, Rae [20] has studied theoretically 
the effects of homogeneous non-equilibrium 
dissociation near the leading edge of a flat plate 
by a series solution involving ascending powers 
of the homogeneous reaction Damkohler 
number. As a result of this analysis, Rae devised 
a relatively simple but accurate empirical method 
of extending his first-order solutions to a region 
downstream of the leading edge that is far 
beyond the actual radius of convergence of the 
first-order terms. In view of this success and the 
qualitative similarity between the methods of 
solution employed here and in [20], one is there- 
fore naturally led to the idea of adapting Rae’s 
approach to problems involving heterogeneous 
surface reactions. 

To bring out the essential arguments involved, 
consider frozen dissociated boundary-layer flows 
over a flat plate, wedges, or cones in the case 
where the surface catalycity varies according 
to the simple power law (31) with X > 0. 

* When r;,+ 0, (44b) shows that r&,(0) also approaches 
zero everywhere. On the other hand, when 111 --f ~0, iwn(0) 
is a constant and q,,(e) decreases with 0 because of the 
increasing boundary-layer thickness as the flow expands 
around the nose. 

According to (32), the leading first-order terms 
in the full series solutions for the change in 
atom concentration and diffusion along the 
surface are 

40, f) = 1 - F + . . . 

g (0, f) = J!Ff) ;;;;f;) co, f) = [(f) _ . . . 

= 41 - 40, fll (46) 

where w1 (SC, h) = --Z:(O) is obtained from 
Fig. 2 for any chosen value of 

fj-1 = h s f dc - -. 
5 df 

By differentiating (46) with respect to f, it may 
also be noted that, to first-order, h is related to 
the streamwise variation of the surface diffusion 
as 

h N f (d/df) KWW (0, 01 = h, 
(Wd a 5) - * (47) 

Equations (45), (46) and (47) are of course valid 
only for 5 Q 1. However, following Rae, we 
now seek to extrapolate these first-order solu- 
tions to arbitrary values of 5 by making the 
following assumption : the relationship (46) 
between ~(0, 5) and &/a7 (0, f), which is 
rigorous only for 5 < 1, is in fact the correct 
form of the solution along the surface at all 5, 
provided that o,(h) is based on the value 
h 2: h’ given by (47). Substituting the boundary 
condition (7) into (46), one thus obtains the 
following local approximation : 

The corresponding value of h’ is found by dif- 
ferentiating (48) with respect to 6, holding w1 
constant: 

= z(0, .$I. (49) 

At 1 -f O[z(O, 5) + 11, these relations become 
exact since X’ --f h; therefore, they give the cor- 
rect initial values and streamwise gradients in the 
surface atom concentration and diffusion flux. 
On the other hand, at large 5, where the wall 
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FIG. 9. Comparison of exact and approximate 
solutions. 

approaches a completely catalytic condition 
[z(O, 5) -+ 01, (48) and (49> predict the correct 
asymptotic behavior since 

w,(X) -+ w0 =I: O.~~SC’/~ when A’ + 0. 

The foregoing approximation enables a very 
simple and rapid calculation of the atom con- 
centration and diffusion flux distributions along 
the surface. By specifying the concentration 
[obtaining h’ and ol. for a given X from (49) and 
Fig. 2, respectively], the streamwise station 5(x) 
corresponding to it may then be found from 
(48). To evaluate the accuracy of the method, 
application has been made to several cases of flat 
plate flow previously treated by the full series 
solution; a comparison of the two theories, 
shown in Fig. 9, indicates an excellent agreement. 

Indeed, it is seen that the first approximation 
based on h’ = A gives a close representation 
of the first ten terms of the series solution for 
1; < 1. The approximate local theory also gives 
the proper behavior when i $ 1, correctly 
merging into the local similarity solution when 5 
becomes slowly varying at large X. From these 
results, it may be concluded that the proposed 
approximate method of extrapolating the first- 
order solution to arbitrary values of x will 
provide an accurate description of the com- 
position field around plates, cones, and wedges 
when the surface catalycity is distributed accord- 
ing to the power law (31). 

5. CONCLUDING RFMARKS 

In this paper, we have studied some new 
solutions to the diffusion equation for frozen, 
dissociated, laminar boundary-layer flows over 
bodies with an arbitrary continuous distribution 
of first-order atom recombination rate along the 
surface. The analysis extends the theory of 
Chambre and Acrivos to plate, wedge, and cone 
flows along which the surface Damko~er 
number varies as any power or polynomial 
function of the streamwise distance. It was 
shown that these exact solutions, which take the 
form of power series that are easily evaluated on 
a desk calculator, satisfactorily describe a signi- 
ficant portion of the variations in atom concen- 
tration and diffusion heat transfer due to variable 
surface catalycity. Moreover, by imposing the 
assumption of local similarity in the velocity 
profile, these series solutions were shown to be 
good approximations for hypersonic flows 
around highly cooled blunt bodies with varying 
surface catalycity around the nose. 

An approximate solution, based on an 
empirical method devised by Rae 1201 for gas 
phase reactions, was also given. It provides an 
extremely simple closed form representation of 
the exact series solutions throughout the entire 
flow field by means of a local nonlinear extra- 
polation of the leading series terms. It was 
shown by several examples that this method 
yields very accurate results for the distribution of 
atom concentration and heat transfer along the 
surface for a variety of streamwise variations 
in wall catalycity. 

Although the present analysis considers only 
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first-order atom recombination, it may be readily 
extended to higher-order surface reactions by 
appropriately generalizing the treatment of 9 
ChambrC and Acrivos. Moreover, it may be . 
noted that the approximate technique of a local 
nonlinear extrapolation of first-order series 10. 
solutions developed here for continuously 
distributed surface reactions is also applicable 
to flows which discontinuously varying surface 
catalycity [8]. 11. 
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On considere les tcoulements autour de plaques, de diedres et de cones. L’analyse Ctend la theorie 
de Chambre et Acrivos, valable pour une efficacite catalytique et une temperature de surface con- 
stantes, au cas ou le nombre de Damkohler varie comme une puissance de la distance, ou au cas oh ce 
nombre est distribd sous forme polynomiale en puissances positives, entieres ou fractionnaires, de la 
distance. D’ailleurs, en faisant l’hypothese d’une similitude locale dans le profil de vitesse, les solutions 
s’appliquent tgalement, avec une bonne precision, a des corps Cmousses hautement refroidis en 
ecoulement hypersonique. 

Une methode de resolution approch&e est Bgalement Ctudiee, elle donne une forme analytique 
extremement simple des solutions en series exactes a travers le champ complet de l’ecoulement, au 
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moyen dune extrapolation localeSnon lineaire du terme principal de la serie. Plusieurs exemples 
montrent que cette technique foumit des resultats tres p&is en ce qui conceme la concentration 
atomique, le flux de diffusion, la distribution des echanges thermiques, pour un certain nombre de 

variations de l’efficacite catalytique de la paroi dans le sens de I’tcoulement. 

Zusammenfassung-Die Arbeit behandelt verschiedene neue Typen exakter Reihenlosungen der 
Diffusionsgleichung fur chemisch eingefrorene, dissoziierte, laminare Grenzschichtstromungen an 
K&pen mit beliebiger, kontinuierlicher Verteilung Atomrekombination erster Ordnung entlang der 
Obertlache. Platten-, Keil- und Kegelstromungen wurden untersucht. Die Analyse erweitert die 
Theorie von Chambre und Acrivos fur konstante katalytische Oberllachenwirkung und Temperatur auf 
den Fall, dass sich die Damkohlerzahl der Oberflache nach Potenzen der Entfernung Lndert oder als 
Polynom ganzer oder gebrochener positiver Potenzen des Abstandes vorliegt. Dartlber hinaus lassen 
sich die Losungen, die mit der Ntiherung erzielt wurden, dass fur die Geschwindigkeitsprofile 
ortliche Ahnlichkeit vorliegt, mit guter Genauigkeit auf stark gekiihlte stumpfe Korper in Hyper- 
schallstrijmung anwenden. 

Ebenfalls dargestellt wird eine Methode zur naherungsweisen Losung. Durch lokale nichtlineare 
Extrapolation des Fiihrungsgliedes der Reihe ermoglicht sie eine extrem einfache, geschlossene 
Darstellungsform der exakten Reihenlosungen im ganzen Stromungsbereich. Einige Beispiele liefern 
mitdieserTechniksehr genaue Ergebnisse fur die Atomkonzentration an der Oberflache, den Diffusions- 
Strom und die Verteilung des Wlrmetiberganges fur mehrere Variationen der Katalysierwirkung der 

Wand in Striimungsrichtung. 

AHEOTIWJWI-B aaHHOi8 CTaTbe paccMaTpmBaeTcH HeCIiOJIbKO HOB~IXTHFIOR TOYHbIX peIIIeHHii 

R BHAe pRAa ypaBHeHHH AHf.$@y3MR AJIR XHMWIeCKH 3aMOpO)KeIIHbIX jJHCCOIJH&IpOBaHHbIX 

JIaMEiHapHbIX IIOrpaHWIHbIX CJIOeB y TeJI C lIpOM3BOJIbHbIM HeItpepbIBHbIM paCIIpeAeJIeH&ieM 

CKOpOCTElpeKOM6HHa~llll~epBO~O~Op~~KaaTO,IO~B~O~b~OBepXHOCT11. npkIBOARTCR CJIyqalI 

06TeKaHIW IrJIaCTIIHbI,KnI~HaM KoHyca. fiaHIIbIe LUaGp3 II AHPMBO AJI~I CnysaH IIOCTORHHO~~ 

KaTaJII4THqeCKOti 3@@eKTHBHOCTH I4 TeMIIepaTypbI IIOBepXHOCTH MCIIOJIb3yIOTCH AJIff CJIysaH, 

KorAa ww10 AaMKenepa ua noaepxsocTn H3nfeneTcn KaK nm6acr cTeneKb paccTonHnR HJI~ 

KaK ~no608 IIOJIHHOM, COAep?Ka~Eii% qenbre HJILI xpo6abIe (IIOJIOFKfCMTenbHbIe) CTeneHH pac- 

CTORHEIfI.KpOMe TOrO,lIyTeM MCIIOJIb30BaHIIFlIIpLI6JIM?KeHIWIJI0KaJIbHOl70 tIOAO6liRB IlpO@WIt' 

CKOpOCTR IIOJIyqeHHbIe peIlIeIILlFl MOmHO C XOpOIIleti TOqHOCTbIO IIpllMeHRTb TaK?Ke K HHTeH- 

CHBHO OXJIa%fieHHbIM TyIIbIM TeJIaM B CBepX3ByIiOBOM IIOTOKe. 

Pa3pa6OTaH TaKlKe npI46WKeHHbIfi MeTOK peUleHIUI, KOTOpbIti AaeT B03MOH(HOCTb C 

IIOMOqbIO JIOKaJIbHO~HeJIllHe~HO~3KCTpaIIOJVI~HH FJIaBHOrO WIeHapRAaIIOJIyYIITb IIOBCeMy 

IIOJIIO TeqeIIIUl Ype3BbFIafiHO IIpOCTbIe IIpeACTaB.ZeHHH L1 3aMKHyTOt $OpMe TOYHbIX peIIIelIllii 

R BllAe pFIAOB. klMeeTCR p"A IIOATBepFKAeHld TOrO,qTO AaHHaR TeXHl4Ka paCYeTa AaeT OgeHb 

T09HbIe pe3yJlbTaTbI IIpM OIIpeJ&eJIeHHEl KOH~eHTpaqIU4 aTOMOB y IIOBepXHOCTII, IIJIOTHOCTH 

~H~~ySHOHHOrO noroua EI pacnpeAeneHmn nepeHoca Tenna npn paanwwonr I43MeHeHtnr 

BAOJIb nOTOKa KaTaJIllITWieCKOti BKTHBHOCTII CTeHKII. 


